

TOPIC: PREMEDICANT DRUGS /PRE MEDICATION

Introduction

Preoperative medication consists of :

- psychological**
- pharmacological preparation.**

How the patient should be like before entering OT:

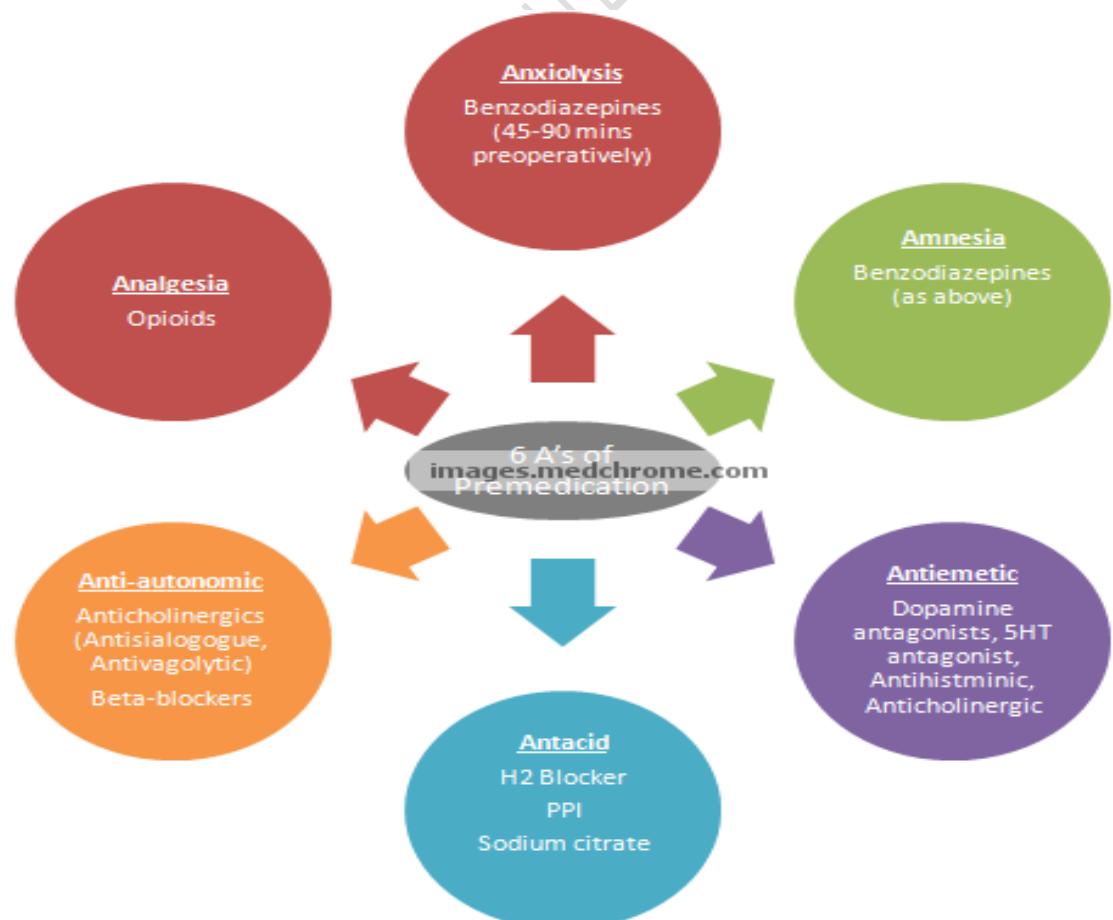
- free from apprehension**
- sedated**
- arousable**
- cooperative.**

Goals of preoperative medication

- To relieve *anxiety*
- Sedation*
- Amnesia*
- Analgesia*
- Drying of airway secretions*
- To decrease the chances of aspiration.
- To produce haemodynamic stability*
- To prevent PONV.*
- To control infection. Reduction of anesthetic requirements*
- Facilitation of smooth induction of anesthesia*
- Prophylaxis against allergic reactions.*

Administration of premedication :

- 1-2 hr before the surgery***
- night before.***


Prescribed medications:

- 2 hours prior to surgery**
- small sip of water (<30 ml) orally**

Ideal premedicant drug should be:

- Anxiolytic*
- Analgesic*
- Sedative*
- Amnesic*
- Safe for patient*
- Painless and easy to administer*
- Highly reliable and specific*
- Rapid onset and rapidly cleared*
- Free of side effect and interaction with other drugs*
- Should not produce undue depression of cardiovascular, respiratory and central nervous system.*

GROUP OF PREANESTHETICS:

I. Anxiolytic / Sedative / Hypnotic:

– **Benzodiazepines** (still commonly used)

. *Diazepam*

. *Lorazepam*

. *Midazolam*

. *Alprazolam*

– **Barbiturates** (not used much)

. *Secobarbital*

. *Pentobarbital*

Benzodiazepines:

Produce anxiolysis, amnesia and sedation

Act predominantly on GABA (Gamma –Amino butyric acid) receptors in the CNS.

Minimal respiratory and cardiac depression

Do not produce nausea and vomiting

They are not analgesics

Crosses placental barrier and may cause neonatal depression

Diazepam:

Can be used as a sole agent as for cathetrisation, cardioversion, bronchoscopy.

Doses :

0.25 to 0.5 mg/kg orally

0.25 mg/kg IM

0.3 to 0.6 mg/kg IV as an inducing agent

Flumazenil, is effective in reversing the sedative effects.

Lorazepam:

A new and effective sedative/amnesic/Anxiolytic

- Has stabilising effect on cardiovascular and respiratory systems*
- Twice as potent as midazolam.***
- Used for lengthy procedures.***
- Obesity prolongs the sedative effects of Lorazepam.***
- Dose for premedication :***
- Oral – 50 µg/kg, not more than 4 mg (can be given 90 min before anesthesia)***
- 0.03–0.05 mg/kg IM***
- Sedation : 0.03–0.04 mg/kg IV***

Midazolam:

- Water soluble benzodiazepine with painless administration***
- Amnesic effects are more potent than sedative effects.***
- choice of drug for out patient surgery and paediatric premedication***
- Capable of crossing the BBB (Blood Brain Barrier) with effects ranging from tranquillization to full anaesthesia.***
- Respiratory depressant***
- Hazardous in hypovolemic patients.***
- Patients with decreased intracranial compliance show little or **no change in ICP** with midazolam***
- Usual dose : 0.15 to 0.3 mg/kg IV***
- Lesser dose to be used in **elderly and obese patients*****
- 0.5 to 0.75 mg/kg orally produces anxiolysis and degree of tranquillity within 30 min***
- Pediatric dose : 0.1 mg/kg IV or IM***
- Intranasal midazolam 0.3 mg/kg has quicker onset of action than oral midazolam.***

(NOTE: Thus, midazolam is an acceptable alternative to barbiturates for induction of anesthesia in patients with intracranial pathology.)

II. Opioid analgesics

- *Morphine*
- *Pethidine*
- *Fentanyl*

They differ in duration of action; can be given parentally.

- *administered preoperatively for sedation*
- *control hypertension during tracheal intubation*
- *analgesia*

For preoperative analgesia, the use of IV fentanyl is preferred :

- *rapid onset*
- *short duration*

Fentanyl is also available as transdermal patches.

Morphine:

- An opium alkaloid and a standard potent addictive analgesic /sedative/Anxiolytic*
- May lead to GI spasm, biliary tract spasm, even renal tract spasm.(avoided in renal and biliary colic)*
- Causes constipation and urinary retention*
- Depresses respiration both in rate and depth*
- Passes through placental barrier (affects foetus and prolongs child birth)*
- 1mg of IV morphine ≈ 4 mg of oral morphine*
- Dose : 1.0 – 2.5 mg IV*
- Morphine should be carefully used in :*
 - *Extremes of ages*
 - *Respiratory problems*
 - *Liver and kidney pathology*
 - *In patients with increased ICP*
 - *Pregnancy*

Fentanyl:

- Potent narcotic analgesic ; 100 times more potent than morphine*
- Metabolised in liver and excreted through urine and feces*
- Respiratory depression and rigidity of respiratory muscles **which can be satisfactorily treated with naloxone.***
- Less nausea and vomiting*

- Cautious use in patients with COPD, head injury and patients on MAO(Monoamine Oxidase Inhibitor) inhibitors.**
- Dose :** 1-5 μ g/kg IV.

III. Anticholinergic drugs

Three drugs are in use as preanesthetic:

- *Atropine*
- *Hyoscine*
- *Glycopyrrolate*

While the first two crosses the BBB, Glycopyrrolate does not cross BBB and is not absorbed from GI tract.

Doses:

Atropine 0.3 – 0.4mg IV :

used to treat Bradycardia and to control secretions.

- **Hyoscine(scopolamine)** 0.4 mg IV :

More antisialogogue, causes sedation and amnesia, so avoided in elderly patients

- **Glycopyrrolate** (dose 0.1 – 0.3 mg IV) :

Longer duration of action and less tachycardia

Clinical effects of Anticholinergics:

- Antisialogogue effects** : Glycopyrrolate and Hyoscine are more potent than atropine, reduce secretions and Bradycardia after succinylcholine.
- Sedative and amnesic effect** : In combination with morphine, Hyoscine produces powerful sedative and amnesia effects.
- Prevention of Bradycardia** : Atropine is used prevent halothane Bradycardia.

Comparative effects of Anticholinergics :

Side effects of Anticholinergics:

- CNS toxicity:** Atropine produces central Anticholinergic syndrome of the CNS, producing restlessness, agitation, somnolence and convulsions.

Physostigmine 1-2 mg IV reverses the effects when given with Glycopyrrolate

- Reduction in lower oesophageal sphincter tone**
- Tachycardia & Hyperthermia**

- Mydriasis and cycloplegia**(miotic eye drops should be continued in patients with glaucoma)
- Unpleasant and excessive drying of mouth**
- Increased physiological dead space by 20-25%(compensated by increased ventilation)**

IV. Antiemetic

- **Ondansetron**
- **Metoclopramide** – most commonly used
- **Phenothiazines** – **Promethazine** used

Antihistamines and antiemetics enhance gastric emptying and are used to prevent nausea, vomiting in patients which are the single most common factor delaying recovery in patients.

Additional usage includes:

- **Sedative property**
- **Relieving anxiety**
- **Anti-cholinergic effect**

Ondansetron:

- Used for prevention of PONV(Post-Operative nausea vomiting) in a dose of 4 mg IV**
- In children, a dose of 0.1 mg/kg upto 4 mg may be used in vomiting prone children**
- Elimination half life is 3.5 to 4 h in adults**
- Side effects include headache, constipation, diarrhoea, sedation, a sense of flushing, warmth and so on.**

Metoclopramide:

- water soluble antiemetic drug used parenterally, orally and even rectally**
- Dose : 0.15 to 0.3 mg/kg IV, effect lasts for 12h**
- Increases the rate of gastric emptying, and causes some increase in peristalsis of gut**
- May be used in emergency anaesthesia (for hastening the emptying of stomach)**
- Indicated in patients with **hiatus hernia, obese, and duodenal ulcer.****
- Acts both centrally and peripherally**
- Central Action:** Acting as dopamine antagonist, acts on medullary vomiting center, producing anti-emetic effect.**
- Peripheral Action:** Enhances gastric emptying so that gastric components are passed earlier, preventing gastric aspiration.**

NOTE: Atropine should be withheld until induction of anaesthesia as it blocks effects of metoclopramide

V. Prevention of pulmonary aspiration:

- No drug or combination is absolutely reliable in preventing the risk of aspiration*
- Patients with no apparent risk of aspiration, these drugs are not recommended*
- Cimetidine and Ranitidine are the two drugs in common clinical use which when used as premedication may increase the gastric pH higher than 2.5 and decrease the gastric volume < 25 mL***

NOTE: (< 25 ml) which is theoretically desirable to lower the incidence and severity of acid aspiration syndrome.

Factors predisposing to aspiration:

- Emergency surgery*
- Inadequate anesthesia*
- Abdominal pathology*
- Obesity*
- Opioid premedication*
- Lithotomy*
- Difficult intubation/airway*
- Hiatal hernia*

Summary of fasting recommendations to reduce the risk of pulmonary aspiration:

Ingested material	Minimum fasting period (hrs)
Clear liquids	2 hrs prior to surgery
Breast milk	4 hrs prior to surgery
Infant formula	6 hrs prior to surgery
Non human milk	6 hrs prior to surgery
Light meal (toast and clear liquids)	6 hrs prior to surgery

- Reduce the secretion of acid** into the stomach by about 70% by blocking the effect of histamine on receptors in the stomach wall
- Used for **prevention of acid aspiration syndrome**

Ranitidine seems to be better than cimetidine due to:

- its *longer duration* of action
- its *lower incidences of side effects* and drug interactions
- Doses** : Cimetidine – 400 mg (PO)

Ranitidine – 150 mg (PO), **90 to 150 min** before induction of anaesthesia

- Also *effective* when given **IV 45 to 60 min** before induction, but are unable to influence acid already present in the stomach, which depends on gastric emptying
- Oral *sodium citrate* **15-30 minutes** before induction can also be used for this purpose

VI. Preoperative Surgical Antibiotic Prophylaxis:

- Antibiotic selection :**

Cephalosporin's (against skin microbes) e.g. ceftriaxone, cefotaxime, clindamycin, metronidazole

Vancomycin (anaerobic and gram-negative microbes)

- Timing :**

- *1 hour prior to incision*
- *2 hours before incision for Vancomycin*
- *Prior to tourniquet inflation*
- *Redose after two half-lives (Cefazolin has half-life of 2 hours so redose if surgical procedure > 4 hours)*

Premedication in paediatric patient:

- Includes age-specific psychological preparation*
- Topical anaesthetic creams are often prescribed for children before cannulation*

B. Pharmacological preparation for paediatric patient:

Oral premedication is preferred for patients without IV access

1. *Midazolam (0.5 – 0.75 mg/kg) in a flavoured oral preparation produces sedation. Roohafza, honey etc can be used as effective flavouring agents. Intranasal midazolam has faster onset but causes nasal burning.*

2. **Paracetamol syrup - 5-10mg/kg**

10-15mg/kg rectally produces analgesic effects.

3. **Ketamine** (5 – 10 mg /kg) prescribed 20 to 30 min before induction facilitates smooth separation from parents

4. **Opioid:** in the absence of an IV catheter, transmucosal administration of fentanyl (lollipop) is effective in producing sedation.

Pre op Medication instruction guideline :

Medication to be continued on day of Surgery:

Anti hypertensive

- Diuretics
- Cardiac medication
- Antidepressant – anti anxiety
- Thyroid, asthma medication

NOTE; Patients on alcohol dependence should receive diazepam group of drugs to prevent withdrawal symptoms

(Withdrawal diuretics) -> Hypervolemia, pulmonary oedema, cardiac failure. Continue steroid therapy for pts at risk of adrenal suppression

Medications to be discontinued before surgery:

- Aspirin : * 7 days before surgery
- NSAIDs : * 48 hrs before plastic retinal surgery
- Oral hypoglycaemic drugs : * on the day of surgery
- Insulin : * 1/3rd dose in morning
- Warfarin : * 4 days before surgery
- Heparin : * 4 – 6 hrs before surgery
- MAO inhibitors : * 2 weeks before surgery

(MAO inhibitors produce severe interaction with sedatives, hypnotics, narcotic analgesics and anesthetics , so, discontinue to bring MAO level in the brain normal at that time. Insulin -> include glucose to provide energy, to include insulin to provide catabolism and reduce customary dose in the morning to decrease the risk of hypoglycaemia